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ABSTRACT 

This paper is concerned with (i) the maximization 
n 

of net return  £ ,rjCy. tt.) and, (ii) the maximi- 
j-1 J  J  ;J   n 

ration of average net return  £ ^A^*'^/      
0*  a 

j-1 :, i      ' 
deterministic multicomraodity system subject to 

linear restrictions on the inventory levels y  and 

the review periods t  (J"', ••., n) . 

The first problem is a symmetric quadratic program. 

For the second problem, an algorithm is given for 

finding the optimal solution. 
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I. INTRODUCTION 

1. In this paper is considered: the maxi•ization of the net return 

I wj(yj,tj) and the average net return I wj(yj,t)/t of a deterministic 

.ulticommodity system subject to linear restrictions on the inventory levels 

yj and the review periods tj • 

2. It will be useful to give first, a short description of the deter-

ainistic multicommodity system whose the net return is w(y,t) • The 

characteristics of such a system are the followi·ng [7]. 

(i) Demand is deterministic at a constant rate of a quantity units 

per time unit, R > 0 • 

(ii) The replenishment rate is infinite. 

(iii) 

(iv) 

h • inventory holding cost, h > 0, dimension: 
$ • 

Unit.Unit-time 

c • cost of production, dimension: _L_ 
Unit 

(v) r • revenue, dimension: $ 

(vi) K • ordering cost, dimension: $ 

(vii) 

(viii) 

P • penalty (shortage cost), dimension: 

p • penalty (good will lost), dimension: 

(ix) y • inventory level, dimension: Unit. 

(x) t • review perio~ time, dimension: Time 

(xi) w(y,t) • net revenue, dimension: $ 

$ 
Unit.Unit-Short 

$ 
Unit-Short 

(xii) h, c, r, k, P and P are nonne&ative conatana, ~~ereaa y and t 

are variables. 

The value of the net return w(y,t) ia given by 

(1) 

F(y It) 

w(y,t) • C(y,t) 

H(y,t) 

if y < 0 • 
if 0 < y < Rt • • 
if y > lt • 
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where: 

(2)   F(y.t) - (r-c)Rt - [K + p(|^ - y) + pRt] 

O)   G(y,t) - (r-c)Rt " [K + ^ y2 + |^ (Rt-y)2 + P(Rt-y)] 

(4) H(y,t) - (r-c)Rt - [K + h(y - | t)t] 

Prom (2), (3) and (A) it can be observed that n(y,t) has the following 

properties: 

(«)  *'(y»t)  Is a continuous function of y (unrestricted) and t > 0 

(b) —^' '  exists and is I. continuous function except at the points 

(0,t) and (Rt.t) . 

(c) —)~r*  '    exists and  Is  a continuous  function except  at the points 

(Rt.t)   . 

(d) *(y.t)  is a concave function for all y and t such that 

0 < y < Rt . 

Define the negative net return N(y,t) 

(5) N(y,t) - -w(y,t) 

(6) N(y|t) - N(y,t - constant) 

From (2), (3) and (4) 

!pt i  y < 0 

| y - | (Rt-y) - P if 0 < y < Rt 

ht If y > Rt 

3N(y!t) 

ay 
- ht-p 

y-Rt- 



The graphical  representation of    N(y|t)     is  given in Figure  1. 

N(y|t) 

Figure  1-a 

\ 

N(y t) 
/ 

\ 

K^ 
/   s 

\ 
1                   m 

\ y-Rt 

(t  > £)      Figure 1-b. 

It is clear  that   the function N(ylt)     attains its minimum at  a point    y 

* P * P 
such  that    y    - Rt    if    t < r or    0  < y    < Rt if    t  > r . 

h       ■ - h 

Lost Sale Case 

In the model discussed before it was assumed that all demands incurred 

when the system was out of stock were backordered. If demands occurring when 

the system is out of stock are lost forever, th.» value of the net return 

ir(y,t) will depend on the length of time for which the system is out of stock. 

In this case, since backorders are not allowed, the penalty due to shortage 

is null, whereas Lhe penalty due to the good will lost is equal to r-c, i.e., 

p « 0 and p - r-c [9]; with these changes in the equation (1), the net 

revenue for the Lost Sale Case becomes 

(8) fCy.t) - 

o 

,(r-c)y ■ 

1(r-c)Rt 

If y < 0 

If 0 < y < Rt 

[K + h(y - I t)t) if y > Rt 

v J. 
h  2 
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II.  RESTRICTIONS 

1.  Restrictions on the Inventory Levels 

There can be many sorts of interactions between Items when an Inventory 

system stocks many items.  For example, warehouse capacity r..ay be limited, in 

which case the items compete for the floorspacc; or there maybe an upper limit 

to the maximum Investment in Inventory whence the items compete for investing 

dollars; or the total weight of items that the warehouse floor can tolerate 

may be limited; etc. 

Consider the case where there is an upper limit b  to the square feet 

of warehouse floor space.  Suppose that n items are being stocked and one 

unit of item j  takes up blj square feet space, then if the floor space 

constraint Is not to be violated at any time, it must be true that 

(9) bu ö(yi'0) + — + b
1 ^v 0) - bi' where 

6(yy0) - 
yj  " y-, > o • 

0      if    y    < 0  . 

It must be noted that in restrictions of this sort all coefficients 

b.     (j"l,   '•>, n)    are nonnegative and    b.   > 0  . 

2. Restrictions on the Storge Period of the Commodities 

Some commodities  (e.g.   perishable goods)   cannot  be stored any longer 

than a certain period of  time    T   .     Therefore in such a case must be,   for 

those  commodities    t.   < T, where    T    is a positive constant. 
J  - 

If all  replenishments  are made up at the same  time,   then the restrictions 

«re of  the  form    t    -  t      for all    i,j"l n  . 

3. Restrictions  Involving     y       and     t   (J-1,   ...,  n)    . 

m— 



s 

In some models all demands must be met from inventory •o that no back-

orders or lost sales are allowed, in this case the restrictions are 

yj • Rj_tj j•l, ••• , n; [7]. 
D 

If the maximization of I wj(yj,tj) is only for one period, then all 
j•l 

shortages are lost sales and the optimal solution must be •uch that 

* * yj > Rjtj must not permitted •ince there 

* * is not a second period for selling the difference yj - Rjtj • Therefore, 

yj! Rjtj must be ~ restriction for all index j•l, ••• , n • 
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n 
111.     MAXIMIZATION N_OF       I     TT   (y   ,t  ) 

j.!     J     J     J 

It   Is  clear  that  under  any  set of  restrictions,   the  maximization of 

I "jCy^.t^)     i&  equivalent   to  the  minimization of     J N   (y   ,t  )   .     Since  the 

ordering  cost    K (j«l,   ... ,   n)     Is  a constant, without  lost of generality 

it can be assumed  that    K    - 0  (j"l,  ..., n)   . 

1.     The Program Urder Consideration Is Program A; 

n 
Minimize        N(y,t)  -     J    N   (y    t.) 

(10) J-l    J    J    J 

Subject   t?    b..   6(y.,0) +   . . . + b.     6(y   ,0)   < b. 
ll i in        n        =    1 

bri 6(yi'0) + ••• +b
r, 

6(yn'
0) ^ b

r 

d-.t, +   . .. + d,   t < d, 
11  1 In n "1 

d ,t. +   . .. + d    t < d 
si  i sn n >    s 

y.    unrestricted,  t    > 0  (j«!, .. . ,  n)   . 

It will be shown that  the program A is equivalent to  the  following 

Program A' 
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(11) 

where 

Minimize N(y.t)   -     [     My     t  ) 
J-l     J     J    J 

Subject  to    by    +   ...   + b,   y    < b, 
11 1 lirn -    1 

by    +  ...  + by    < b 
ri i m n ■    r 

d.  t. + ... + d.   t    < d. 
11 l In n «■    1 

OiyjiRjtj, j-i, 

y - y(y1 yn)^ t - (t1 tn)1, (y,t) - (y1 yn; t1, .... tn) 

all coefficients of y.  and t , and b  and d.  are constants for all 

j-1, ..., n; 1-1, ..., r; k=l, .... s .  5(y.,0)  is defined by (9) and 

bl1 - 0, bl > Q- for a11 i,,1 r: J"1' •••' n ' 

Theorem 1 

I 

/ 
> 

* * 
The solution  (y ,t )  Is optimal for the program A if and only If It 

is optimal for the program A'. 

Proof; 

Define 

N  - {1 n} . 

S - {(y,t)|(y.t) satisfies (10)} . 

S' - {(y,0|(y,t)  satisfies (11)} . 

o    o. 
Let     (yVu)     be a solution of   (10).   i.e..   (y0,t0)e   s.   Associated with  (y0,t0) 

defined  the  sets: 
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Nj - (JIJCN. y° < o} . 

N2  -   {j|jeN.   0    < y°  <  RjtJ}   . 

N3 -   {j|jtN.  yj > YJ}   . 

Let     (y'.t  )  -   (y^   ....  y^;   t^ t  )'     such  that 

0 ii JeN1 

y]- yi 
if JeN2 

«J <] if JeN3 

The vector    (y'.t  )    satisfies  the restriction   (11),  because for all 
V 

1"1 r;  it is  true  that 

bijyj   " b^   6(y°,0)  - 0    if    je^ 

bljyj   " biJyJ 

b    v'   < b    v0 

ijyj  -    ijyJ 

if    jeN2 

if    jeN3 

Furthermore,  si since    yj   > yj     if    je^,  yj  - yj    if    jeN2    and    yj   < y° 

JcN-,   a direct application of   (7)  gives: 

if 

NjCyj.tJ) < NjCyj0,^0) if jc^ 

NjCyj.t") - NjCy^tJ) if jeN2 

Vyj^XN^.t")  if jeN3 

That is, for each solution (y ,t )e S there is a solution (y',t0)e S' 

such that NCy'.t0) < N(y0,t0) . This implies: 

(12) 
minimum N(y,t) < minimum N(y,t) 

(y,t)e S'      (y,t)e s 



On   the  other hand 

S    C   S,  Implies: 

(13) minimum    N(y,t)   >  minimum    N(y,t) 
(y.t)c    S'      ~ 

From  (12)   and  (13),   the Theorem follows, 

In view of Theorem I.,   it will be sufficient  to consider the functl 

N(y.t)     only on the  region     0  <  yj   < R^ .  J.J n   _ 

Q.E.D. 

on 

Then,   from (3) when    0<v    <Rt      K    -n 

n 
N(y.t).   [ N  (y     t   ) 

J-l J     J     J 

(U) n 

■I ZRJ "j+ H; ^W "^r^i'fy^ 
U.lng „atrlx notation.  the flrst tcri. on the rlght hand ^ ^ ^ ^^ 

in the form 

(15) 

where 

I 
j-l 

!jL      2      ^ 2 
(y.O'QCy.t) 

(y,t)   "  (yl yn;   h \y     «nd    Q    is   the    2n x 2n    matr ix 
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Q• 

l 

h +P 
n n 
2R 

n 

p 
D -r 

~·1 
2 

Observe that the matrix Q is positive (semi-) definite since all coefficients 

of yj 2 and (Rjtj-yj) 2 on the left hand side of (15) are nonnegative. That 

ia, (y,t)'Q(y,t) > 0 for each vector (y,t). In particular, the left hand -
aide of (15) is always positive for each vector (y,t) ~ 0, if Pj > 0 for 

·au ... , n; i.e., the matrix Q is positive definite if Pj > 0 for 

all • • • J n • 

(Note: at the beginning it was assumed hj > 0, Rj > 0 and Pj ! 0 

for all j•l, ••• , n). 

Then, an equivalent formulation of the program A' is 

Minimize N(x) • x'Ax + g'x 

(16) Subject to Ax+b>O -
X > 0 -

where 



-bll -b 1n 

-b -b r1 rn 

0 0 

A • 

0 . . . 0 

-1 

-1 

0 

0 

-b11 

-d al 

. . . 

. . . 

. . . 

0 

• 

0 

-d 1n 

l 
n 

and b is the (r+S+n) column vector 

2. Existence of the Solutions. 

• . • , d ; 0, ••• , O)' • 

The aet S' • {(y,t)!(y,t) satisfies (11)} ia a cloaed convex aet. 

If in addition it is bounded, then the program A' alwaya has an optimal 

11 

aolution, because N(y,t) is a continuous function and a continuous function 

defined on a compact (closed and bounded) aet has an absolute minimum on it. 

Let s1 and s2 be such that 

S1 • {y,(y,t)t S'} and S2 • {tl(y,t)t S'} 

The set s1 is clearly bounded because in the set of reatrictiona (11) it 

was assumed that bij ! 0 and bj > 0 for all i•1, ••. , r; j•1, . . . ' n • 

The set s2 may be unbounded. 

However, if Pj > 0 for all j•1, ••• , n; then the prosram A' has always 

an optimal solution. This affirmation follows immediately from the fo11owins: 
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(i) s is a closed convex set, and (ii) when for all j•l, ••• , n; 

the objective function N(y,t) cannot be unbounded in the direction of ex-

treaization, since it is the sum of a positive definite quadratic form and a 

linear expression 

3. There are many ways t obtain the optimal solution of program A', a 

quadratic symmetric program. One method is the following: See [1]. 

Find Z > 0, such that -
HZ+ q > 0 - and 

Z' (Mz + q) • 0 

where 

and 

Z • (x,~) • The components of the vector ~ are the nonnegative multipliers 

associated with the inequalities of (16). 

Example 1 

A retail merchant in city A makes a weekly trip to city B in order to 

refill his supplies. The truck he uses, restricts the volume of the goods. 

Therefore the m~rchant must decide how much of each commodity he should take 

such that, (i) the truck restrictions are not violated, and, (ii) his 

total profit is maximized. 

All shortages are lost sales and the set up cost is the cost of the trip. 

is the buying price at city B; rj, hj and are respectively the 

selling price, inventory holding cost and dt~and of ite~3 j•l, ••• , n; vj 

and are the volume nnd weight of item j . Finally v and w are the 

volume and weight capacities of the truck. 
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For instance, with nc2 and the following values: 

Item rj cj hj Rj pj pj vj wj· K v w 

1 5 3 0.4 20 0 2 6 3 100 2400 1500 

2 3 2 0.5 50 0 1 4 5 

For reason of space all dimensions were dropped. 

The unit time is 1 day, 

.. .. volume is 1 cubic foot, 

.. " weight is 1 pound. 

Then, the problem is 

Minimize 

Subject to 

The optimal solution is y1 • 100, y2 • 100 • 
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n 
IV. MAXIMIZATION OF 2 nj(yj,t)/t 

j•l 

The maximization of the average total net revenue per unit time when 11 

replenishments are made up simultaneously and the inventory levels are subject 

to linear restrictions is considered in this section. 
n 

For convenience, one will minimize L Nj(yj,t)/t 
j•l 

1. The Program Under Consideration Is Program B: 

Minimize 

yj is unrestricted j•l, ••• , n 

instead of maximizing 

t > 0 • 

-
where 

(y,t) • (y1 , ••• , yn,t)' is an (N+l) column vector and the restriction on 

the inventory levels yj are the same as in program A'. 

Consider also 



Program B': 

Minimize 

Theorem 2 

* * 

+ bl y < bl n n • 

0 ~ y j ! Rj t; j•l, ••• , n 

t > 0 • -

IS 

The solution (y ,t ) is optimal for the program B if and only if it is 

optimal of the program B'. 

With tj•t (j•l, ••• , n) the proof of this theorem follow• the same 

line as the one for Theorem 1. 

Define 

(19) T • {(y,t) ! (y,t) satisfi es (18)} . 

Theorem 3 

* * If N(y ,t ) < 0 
* .. and + + N(y ,t ) < 0 then 

t 

* * Where (y ,t ) + + 
is the optimal solution of program B' and N(y ,t ) • 

• minimum N(y,t) • 
(y,t)£ T 

* * If (y ,t) is an optimal solution of program B', then 

* * N(y ,t ) < N(y,t) for all point (y,t)£ T, * c t t 
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in particular : 

(20) 
* * + + N(y ,t ) < N(y ,t ) , since ( + t+) T * - + y ' E: • 
t t 

On the other hand, 

N(y+,t+) ! N(y,t) for all point (y,t)£ T, 

in particular: 

(21) + + * * * * N(y ,t) < N(y ,t ), since (y ,t )£ T • -
Using the hypothesis of the theorem in {20) and (21) one can get, respectively 

(22) 

From (22) and (23) 

1 . Hence 

Q.E.D. 

The economi cal meani ng of t his r esult is: if the optimal total net 

revenue for the one period analysis is positi ve and its optimal review period 

+ t , when the opti mal average total net revenue per unit time is nonnegative, 

then t+ is an upper bound for the optimal review period of the Steady State 

Case. 

In view of Theorem 2., it will be sufficient to consider the function 

N{y,t)/t only on the region 0! yj! Rjt {j•l, ••• , n) • 

From (3). 

• N'(y,t) + N"(t) 
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where 

(24) N' (y, t) 

(25) N" ( t) 

Define 

(26) T(t) • · {yl (y,t)t T} • 

Note that T(t) is the set of solutions y of (18) for a fixed value of t, 

and T(t) is a compact s et. 

Then, an equivalent formulation of the program B' is 

Minimize 

Subject to 

N(y, t) 
t 

(y,t)£ T • 

Observe that 

' (27) 

(28) 

(29) 

Mi i N(y,t) 
n mum t • 

(y ,t)£ T 

Define 

H(t) 

h(t) 

• minimum (minimum N(i,t)) 
t > 0 y £ T(t) • 

• minimum ~minimum (N' (y, t) + N" ( t))) 
t > 0 y £ T(t) -

• minimum N" ( t) + minimum N' (y , t)) 
t > 0 y t T(t) -

• minimum N(y,t) • h(t) + N"(t) 
y £ T(t) t 

• minimum N'(y , t) 
y £ T( t) 
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Theorem U 

The program ß' always has an optimal solution. 

In order to prove Theorem 4., the following definitions and theorems are 

necessary. 

Definition 1.  Scalar function 

A correspondence which assigns a single scalar (a real number, a point 

In R') to each point x of a set V    is called a scalar function of  x and 

Is written as 0(x) .  The scalar function 0(x)  is said to be defined on T   . 

Definition 2.  Quasi-convex function 

A scalar function G(x)  defined on a convex set  TCR  is said to be 

quasi-convex on T    If 0(ax + (l-a)y) < max (0(x), 0(y))  for each pair of 

points  x, y e T and all real  a > 0 . 

Definition 3.  Strictly quasi-convex function 

A scalar function 0(x) defined on a convex set  FCR is said to be 

strictly quasi-convex on F if for each pai" of points  x, y e T such that 

0(x) t  0(y), it is true that 0(ox + (l-a))< max (0(x), 0(>))  for all real 

a > 0 . 

Theorem 5 

The program: minimize N'Cy.t)  such ".hat y e T(t), always has an opti- 

mal solution. 

Proof; 

Since N'(y,t)  is a continuous function and  T(t)  is a compact set, 

N'Cy.t) has an absolute minimum on T(t) . 
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Theorem 6.  [3J 

The function 

Proof 

The function N(y,t)  Is continuous and the set T(t)  is compact. 

Therefore for each number  t > 0  there Is a point y0e T(t0)  such that 

N(y ,t )  Is an absolute minimum. 

Let  t. > 0 and t- > 0, with *,   t tj   '    Then there exist8 Y t T(t.) 
2 

and y e T(t?)  such that 

(30) M(t ) - minimum NCy.t.) - Nty^t.) 
1   y e T(t1)   

1        1 

(31) M(t,) - minimum N(y,t,) - N(y2,t,) 
y c t(t2)   

l z 

On the other hand the set of restrictions (19) are linear.  Therefore, if 

1 2 1        ? 
y e T(t1)  and y e T(t2)  then  (ay + (1-oOy )e Ttat. + (l-a)t2)  for «11 

real a > 0 . 

Hence 

M(at1 + (l-a)t2) - N(y,at1 + (l-a)t2) 

yeT(at] + (l-a)t2) 

< «(ay1   l-a)y2, at1 + (l-a)t2) 

But the function N(y,t)  is convex, then 

M(at1 + (l-a)t2) < aN(y
1,t1) + (l-a)N(y

2,t2) 

Using (30) and (31) 

M(t) ■ minimum N(y,t), is convex / 
y c T(t) ^ 
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MCctj + (1-Q)l2) < M(t1) + (l-a)M(t2) 

That is, M(t)  Is a convex function. 

Corollary 1.  [3] 

Q.t.D. 

The function H(t) 

(0, -H») . 

minimum 
y  e T(t) 

N(y.t) 
is  quasi-convex and defined  on 

Proof; 

uu\ ■   < N(v,t) lUU   •*  minimum •—J-'— 
y e T(t)    t 

(minimum N(y,t)\— 
y c T(t) j* 

mi 
t 

Then,  for all    a > 0,   t.   > 0,   U  > 0, 

M(at    +  (l-a)t-) 

1 I at.  + (l-cOt-) 

Since    M(t)    is  convex, 

oM(t  ) +  (l-a)M(t  ) 
H(at1+(l-a)t2)<    a(ti) +  (1_a)t/ 

Observe that if  x > 0, y > 0 then 

H a-4-K    a 
<^> bx < ay <^> (a+b)x < a(x+y) <=> —— < - ■ " ^ x+y ■ x 

MCt^   M(t2) 
Suppose HCt.) «   > •  

1    t,   «=  t- 

With the substitutions a «= oMCt,), x « Clt
1 » etc' The conclusion is 

H(at1 + (l-a)t2) < H(t1) = max (HC^), H(t2)), 

I.e. the function H(t)  is quasi-convex. 

Q-E.D. 

■i^ mamm 
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Remark 

Since the function M(t)  is defined and convex on  [0, +">)  it is 

continuous for all t c (0, -H») .  The function H(t) - "T-^ is defined for 

all  t > 0  and it is the ratio of two continuous functions, hence, H(t)  is 

continuous function for all  t > 0 . 

Proof of Thcorcm A 

For definition (28) . 

n\,t}   *=  minimum —~  
y e T(t)  t 

minimum ± J ^ + 2^ ^ j 2 + if ^V^ ^f* SV'* i'i 

since y < R t (jcl, ..., n) 

bounded 

lim H(t) 
t-KH- 

if  I K - 0 

If  J K > 0 . 
J-l J 

In the first case define H(0) • lim H(t) . 
t-»0+ 

Then  the  function    H(t)     is  continuous for all    t  > 0.     In Theorem 3, 
•i 

* 
It was showr that the optimal review period  t  of program B is bounded 

by  t  .  Hence, since H(t)  is continuous on the compact set  [0, t ], the 

theorem follows immediately. 

If H(t)-H-», one can find a number C > 0 such that ri(t) > H(t )  for 

t-*0+ + 

t < t •  But H(t) is continuous on the compact set  (C. t ] .  Hence H(t) 

has an absolute minimum on  [C» t ] . 

Q.E.D, 

MMHM 
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In order to find the optimal solution of program B' an algorithm is given. 

The algorithm is based mainly on the following: 

(i) For each t > 0, the program 

Minimize N' (y, t) 

Subject to y t T(t) 

always has an optimal solution. 

(ii) H(t) is a continuous (strictly) quasi-convex function of t • 

3. Algorithm 

Step 0 

(a) Find the upper bound t+ 

(b) 

Step 1 

Let + So • {0, t } 

Find ti such that H(ti) • min H(t) 
t t s1 

Step 2 

(a) Find t' and t" such that 

t' • min [(ti-t) > 0] 
t t si I min [ (t-t1) > 0] if 

+ 
ti < t 

t" • t t si 

t+ if 
+ 

t - t i 

(b) t' 1 and t" 1 (t"+t ) Let -= - (t '+t ) . -
i 2 i i 2 i 

Step 3 

Calculate H(t I i) and H(t" ) i 
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Setp 4 

Let Si+l., s1U{t' 1 , t"1 } 

and return to Step 1, with i+l replacing i • 

In Step 0, the upper bound t+ is found by solving the program (minimize 

N(y,t) subject to (y,t)t T), see Theorem 3. 

In Step 3, the values of H(t'i) 

with the formulas (28) and (29). 

and H(t" ) 
i 

are found in accordance 

It must be noted that at each iteration it is necessary to solve the 

following programs 

Minimize N'(y,t'
1

) and Minimize 

Subject to y t T(t'
1

) Subject to y £ T(t"
1

) • 

Define 

Theorem 7 

H(O) • lim H(t), and 
t~ 

• H(t ) • min H(~) 
tt(O,t ] 

th At the K (K•l, 2, .•• ) iteration it is true that 

t+ r if tiC < t+ 
(a) t -t' - and t"-t. - 21( 

IC IC 
21C 

0 if + 
t - t IC 

• t+ 
(b) It -tl(l <-

• 21( 

Proof: 

By induction over K, 

(i) the theorem is clearly true for K•l 
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(ii) assume that it is true for K•r and consider first, the case 

t < t + 
r 

Then, at the r th iteration 

(32) t -t' r 

where 

(33) 

t+ t+ + t -- t"-t , r -- and lt0
-t I <-

2r 2r r • .2r 

and t" • ! (t"+t ) • 
r 2 r 

s - s u { t' t" } . r+l r r' r 

At the (r+l)th iteration 

Step 1 

(34) Suppose that tr+l • t (i.e. H(t ) < H(t' ) , li (t" )) 
r r r r 

Step 2 

(35) t' • t' t" - t" r' r 

Then, from (32), (33), (34), and (35), 

t -t' • t -t' • t -! (t'+t ) • ! (t -t') r+l r r r 2 r 2 r 
1 . - . 
2 

t+ t+ ---2r 2r+l ' 

t+ 't+ ·-·-2r 2r+l 
t"-t - t" -t • ! (t"+t )-t r+l r r 2 r r 

. ! (t"-t ) ~ ! 
2 r 2 

Hence, the part (a) of the theorem is true for all K•l, 2, ••• 

* * Also, t E[t' r' t"r], because if· t < t' r' then there exist A > 0, such 

that * (At + (1-A)t ) c t' r r 
* and H(At + (1-A)t ) • H(t' ) • 

r r 



But the quasi-convexity of H(t) implies that H(t' ) • 
r 
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* * • H(~t + (1-~)t) < max(H(t ), 
r 

H(t )) • H(t ), which contradicts the assump-
r r 

tion (34). Hence, t' 
r 

* < t -
In a similar way the assumtion · t" 

r 
* < t also leads to a contradiction. 

Hence * t c[t' t" ] • 
r' r 

This result and the formulas (32) and ( 3 ) imply that 

+ 
I * !<-tHence, t -tr+l ~ 

2
r+l • Then part (b) of the theorem is true for all 

positive integer K•l, 2, 

A similar 

the proof with 

Following 

the proof. 

Corollary 1 

analysis for the cases tr+l-

the 

the 

assumption that t < t+ 
r 

same steps, the analysis 

* lim H(t ) • H(t ) 
K- ec 

of 

t' or t" in (34), completes r r 

the case + completes t - t • r 

The corollary follows immediately from the facts: H{t) ia a continuous 

* function and lim t • t 
K~ IC 
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Graphical example 
H(t) 

8 8 
2t_ 

Iteration 0 

(a) Find the upper bound  t 

(b) S  - {0, t+} 

Step 1 

H(t+) - min H(t), t - t+ 

teS       0 

Step 2 

(a) t' - 0, t" - t+ 

(b) ^o-F'^'o-^ 

Step 3 

Calculate  H \~]   and    Hit'*') 



Step 4 

si - sou r • t+i u» T" » ' I» return to Step 1, 

Iteration 2 

Step 1 

HCtj) - min H(t) ■= H(|-), t. - f^ 
teS,       V /  1   2 

Step 2 

(a)  t' - 0, t" - t+ 

Step 3 

Calculate HCL^)  and H(t" ) . 

Step A 

s2-s1u{t'1. t^} »O   ^     ^      3t+        J return to Step  1, 

Iteration  112 

27 

Step 1 

H(t  )   - min H(t)   - H^-j,   t0  - f^ 

_Step 2 

(a)     t'  - 0,   t" -  t1 - |- 

(b, f2.i(o+t2).f .^.ip.f).^ 

Step  3 

Calculate    HU'j)     and    H(t"  ) 
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Step  A 

S,   - S-U{t'   ,   t1'  } 
|0, T" •  4~ » ~8~" • 2~ ' "T~  *   t     '  relurn to SteP  1 8 

etc, 
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